Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

				$\frac{w_{WW}}{WW} \frac{w_{WW}}{WW} \frac{w_{WW}}{W} \frac{w_{WW}$
MPC1				cloud
Q	Solution	Marks	Total	Comments
1 (a)	$y = \frac{13}{3} - \frac{7}{3}x$	M1		attempt at $y = a + bx$ or $\frac{\Delta y}{\Delta x}$ with 2 correct points
	(gradient =) $-\frac{7}{3}$	A1	2	condone slip in rearranging if gradient is correct
(b)(i)	y-3 = 'their grad' $(x-1)$	M1		or $7x + 3y = k$ and attempt at k using x = -1 and $y = 3or y = (\text{their } m)x + c and attempt at cusing x = -1 and y = 3$
	$y-3 = -\frac{7}{3}(x+1)$ or $7x + 3y = 2$ or $y = -\frac{7}{3}x + c$, $c = \frac{2}{3}$	Alcso	2	correct equation in any form and replacing with + sign
(ii)	(4,-5)	B1,B1	2	x = 4, $y = -5withhold if clearly from incorrect working$
(c)	7x + 3y = 13 and $3x + 2y = 12\Rightarrow equation in x or y only$	M1		must use correct pair of equations and attempt to eliminate y (or x)
	x = -2	A1		
	<i>y</i> = 9	A1	3	
	Total		9	

1 (cont	:)			$\frac{w_{m}}{m_{m}}$
Q	Solution	Marks	Total	Comments
2(a)(i)	$\sqrt{48} = 4\sqrt{3}$	B1	1	condone $k = 4$ stated
(ii)	$\sqrt{48} = 4\sqrt{3}$ $\frac{4\sqrt{3} + 6\sqrt{3}}{2\sqrt{3}}$	M1		attempt to write each term in form $k\sqrt{3}$ with at least 2 terms correctly obtained
		A1		correct unsimplified in terms of $\sqrt{3}$ only
	= 5	Alcso	3	must simplify fraction to 5
				Alternative 1 $\times \frac{\sqrt{12}}{\sqrt{12}} \left(or \times \frac{\sqrt{3}}{\sqrt{3}} \right)$ M1
				correct with integer terms $=\frac{24+36}{12}$ A1 = 5 A1cso
				Alternative 2 $\frac{\sqrt{48} + \sqrt{108}}{\sqrt{12}}$ M1 $= \sqrt{4} + \sqrt{9}$ A1
				$= 5 A1cso$ Alternative 3 $\sqrt{\frac{48}{12}} + 2\sqrt{\frac{27}{12}} M1$
				$= 2 + 2\sqrt{\frac{9}{4}} \qquad A1$ $= 5 \qquad A1 cso$
				if hybrid of methods used, award M1 and most appropriate first A1
				NMS (answer =) 5 scores full marks
(b)	$\frac{1 - 5\sqrt{5}}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}}$	M1		
	(numerator =) $3 - \sqrt{5} - 15\sqrt{5} + 25$	m1		correct unsimplified but must write $5\sqrt{5}\sqrt{5} = 25$ PI by 28 seen later
	(denominator = 9 - 5 =) 4 giving $\frac{28 - 16\sqrt{4}}{4}$	B1		must be seen as denominator

				WWW.TN/TRAILIES CIDUUS Comments one of these terms correct
IPC1 (cont				Cloud
Q	Solution	Marks	Total	Comments
3(a)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = \frac{3t^2}{4} - 3$	M1 A1	2	one of these terms correct all correct (no $+ c$ etc)
(b)(i)	$t = 1 \implies \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{3}{4} - 3$	M1		substituting $t = 1$ into their $\frac{dV}{dt}$
	$= -2\frac{1}{4}$	Alcso	2	(-2.25 OE) <i>BUT</i> must have $\frac{dV}{dt}$ correct
(ii)	Volume is decreasing when $t = 1$			must have used $\frac{dV}{dt}$ in (b)(i) or starts again
	because $\frac{\mathrm{d}V}{\mathrm{d}t} < 0$	E1√	1	must state that $\frac{dV}{dt} < 0$ (or $-2\frac{1}{4} < 0$ etc) ft increasing plus explanation if their $\frac{dV}{dt} > 0$
(c)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}=0\Longrightarrow\right)\frac{3t^2}{4}-3=0$	M1		PI by "correct" equation being solved
	$\Rightarrow t^2 = 4$	A1√		obtaining $t^n = k$ correctly from their $\frac{dV}{dt}$
	t = 2	Alcso	3	withhold if answer left as $t = \pm 2$
(ii)	$\left(\frac{\mathrm{d}^2 V}{\mathrm{d}t^2}\right) = \frac{3t}{2}$	B1√		(condone unsimplified) ft their $\frac{dV}{dt}$
	$\left(\frac{\mathrm{d}^2 v}{\mathrm{d}t^2}\right) = \int \frac{\mathrm{d}^2 v}{2}$ When $t = 2$, $\frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = 3$ or $\frac{\mathrm{d}^2 V}{\mathrm{d}t^2} > 0$	M1		ft their $\frac{d^2 V}{dt^2}$ and value of t from (c)(i)
	\Rightarrow minimum	Alcso	3	
	Tota	1	11	

				$n = \frac{5}{5}$
c1 (cont	 t)			
Q	Solution	Marks	Total	Comments
4 (a)	$(x+2.5)^{2}$ $q = 7 - '\text{their'} p^{2}$	B1		$p = \frac{5}{2}$
ļ	$q = 7 - $ 'their' p^2	M1		unsimplified attempt at $q = 7 - $ 'their' p^2
ļ				$q = 7 - \frac{25}{4} = \frac{3}{4}$
ļ	$(x+2.5)^2+0.75$	A1	3	
ļ	mark their final line as their answer			
(b)(i)	x = - 'their' p or $y =$ 'their' q	M1		or $x = -\frac{5}{2}$ cao found using calculus
	$\left(-\frac{5}{2}, \frac{3}{4}\right)$	Alcao	2	condone correct coordinates stated $x = -2.5$, $y = 0.75$
(ii)	$x = -\frac{5}{2}$	B1√	1	correct or ft " $x = -$ 'their' p "
(iii)		B1		y intercept = 7 stated or seen in table as $y = 7$ when $x = 0$ or 7 marked as intercept on y-axis (any graph)
ļ		M1		\cup shape
		A1	3	vertex above <i>x</i> -axis in correct quadrant and parabola extending beyond <i>y</i> -axis into first quadrant
(c)	Translation	E1		and no other transformation
ļ	through $\begin{bmatrix} -\frac{5}{2} \\ \frac{3}{4} \end{bmatrix}$	M1		ft either 'their' $-p$ or 'their' q or one component correct for M1
		A1cao	3	both components correct for A1; may describe in words or use a vector
	Total	!	12	

				Comments p(3) attempted; not long division
1 (cont)			ISCI.
Q	Solution	Marks	Total	Comments
5(a)	$p(3) = 3^{3} - 2 \times 3^{2} + 3 (= 27 - 18 + 3)$ = 12	M1 A1	2	p(3) attempted; not long division
(b)	$p(-1) = (-1)^3 - 2(-1)^2 + 3$	M1		p(-1) attempted; not long division
	$p(-1) = -1 - 2 + 3 = 0 \implies x+1$ is a factor	Alcso	2	correctly shown = 0 plus statement
(c)(i)	Quadratic factor $(x^2 - 3x + 3)$	M1		b = -3 or $c = 3$ by inspection
				or full long division attempt or comparing coefficients
	$(p(x)=) (x+1)(x^2-3x+3)$	A1	2	must see correct product
(ii)	Discriminant of quadratic $b^2 - 4ac = (-3)^2 - 4 \times 3$	M1		'their' discriminant considered possibly within quadratic equation formula
	$b^2 - 4ac < 0 \Rightarrow$ no real roots from quadratic \Rightarrow only one real root	A1cso	2	
	Total		8	
6(a)	$\int_{-1}^{1} \left(x^{3} - 2x^{2} + 3 \right) dx$			
	$\int_{-1}^{1} \left(x^{3} - 2x^{2} + 3 \right) dx$ $= \left[\frac{x^{4}}{4} - \frac{2x^{3}}{3} + 3x \right]_{-1}^{1}$	M1		one term correct
	$= \left\lfloor \frac{x}{4} - \frac{2x}{3} + 3x \right\rfloor_{-1}$	A1 A1		another term correct all correct (condone $+ c$)
	$= \left(\frac{1}{4} - \frac{2}{3} + 3\right) - \left(\frac{1}{4} + \frac{2}{3} - 3\right)$	B1√		'their' $F(1) - F(-1)$ with $(-1)^3$ etc evaluated correctly but must have earned M1
	$=4\frac{2}{3}$	Alcso	5	$\frac{14}{3}$, $\frac{56}{12}$ etc but combined as single fraction
(b)	Area of $\Delta \left(= \frac{1}{2} \times 2 \times 2 \right)$			
	$\begin{pmatrix} 2 \\ = 2 \end{pmatrix}$	B1		PI
	Shaded region has area $4\frac{2}{3} - 2$	M1		\pm their (a) \pm their Δ area
	$=2\frac{2}{3}$	Alcso	3	$\frac{8}{3}$, $\frac{32}{12}$ etc
	5			but combined as single fraction

				Www.mymanses Comments multiplying out correctly and > sign used
MPC1 (cont)	t) Solution	Marks	Total	Comments Con
7(a)	8-6x > 5-4x-8	M1	1000	multiplying out correctly and > sign used
	11 > 2x $x < 5\frac{1}{2} \qquad \left(or \ x < \frac{11}{2} \right)$	Alcso	2	accept $5.5 > x$ OE
(b)	$2x^{2} + 5x - 12 \ge 0$ $(x+4)(2x-3)$			
	(r+4)(2r-3)	M1	1	correct factors
	Critical values are -4 and $\frac{3}{2}$	A1		(or roots unsimplified) $\frac{-5 \pm \sqrt{121}}{4}$ both CVs correct; condone $\frac{6}{4}$, $-\frac{16}{4}$ etc here but must be single fractions
	. v ≜	M1		sketch or sign diagram including values
	-4 $\frac{3}{2}$ x			$\begin{array}{c} + & - & + \\ \hline -4 & \frac{3}{2} \end{array}$
	$x \le -4$, $x \ge \frac{3}{2}$ take their final line as their answer	A1	4	fractions must be simplified condone use of OR but not AND
ا <u>ــــــا</u>	Total	<u>ا</u> ا	6	

C1 (cont	f)			$\frac{w_{WW}}{m_{W}}$
Q	Solution	Marks	Total	Comments
8 (a)	$(x-3)^2 + (y+8)^2$	B1		accept $(y8)^2$
	= 100	B1	2	condone RHS = 10^2 or $k = 10^2$
(b)	$y=0 \Rightarrow$ 'their' $(x-a)^2+b^2=k$	M1		Alternative d
	$(x-3)^2 = 36$ or $x^2 - 6x - 27 (= 0)$ (PI)	A1		
	$\Rightarrow x = -3, 9$	A1	3	$(d^2 =) 10^2 - 8^2$ M1
				$d^2 = 36$ A1 or $d = 6$
				$\Rightarrow x = -3, 9$ A1
(c)	Line CA has gradient $-\frac{2}{5}$	M1		
Ì	5			any form of correct equation
Ì	CA has equation $(y+8) = -\frac{2}{5}(x-3)$	A1		eg $y = -\frac{2}{5}x + c$, $c = -\frac{34}{5}$
	2x + 5y + 34 = 0	Alcso	3	5 integer coefficients - all terms on 1 side
	221 - 5 y + 5 + - 5			
(d)(i)	their $(x-3)^2 + (2x+1+8)^2$ or			substituting $y = 2x + 1$ correctly into
	$x^{2} + (2x+1)^{2} - 6x + 16(2x+1) (+73)$			LHS of "their" circle equation and
	2 2 2 2 2 2 2 2 2 2 1 100	M1		attempt to expand in terms of <i>x</i> only
	$x^2 - 6x + 9 + 4x^2 + 36x + 81 = 100$			any correct equation (with brackets
Ì	or $x^2 + 4x^2 + 4x + 1 - 6x + 32x + 16 + 73 = 100$	A1		any correct equation (with brackets expanded)
Ì	$\Rightarrow 5x^2 + 30x - 10 = 0$			must see this line or equivalent
	$\Rightarrow x^2 + 6x - 2 = 0$	A1cso	3	AG; all algebra must be correct
(ii)	$(x+3)^2 = 11$	M1		or correct use of formula
	I			must get as far as $x = \frac{-6 \pm \sqrt{44}}{2}$
	$x = -3 \pm \sqrt{11}$	Alcso	2	exactly this
	Total	++	13	